Monte Carlo Ray-tracing
Advanced Global Illumination And Rendering (TNCG15)

Sathish Kottravel (satko730)
January 2014

Linkoping University

Abstract

Photorealistic image generation is a paradigm that has various applications in the field of computer
graphics such as film and visual effects, architecture, computer games etc.,. In computer graphics
photorealistic image generation is achieved using various types of algorithms. These algorithms intend to
solve rendering equation which derives its basis from light transport formulation. Global illumination has
become key component of such algorithms as it considers both direct lighting (direct illumination) from the
light sources and the contribution of light bounced from other surfaces lit in the scene (indirect
illumination). Many methods have been developed to estimate the rendering equation such as Whitted ray
tracing, Radiosity, and Monte Carlo path tracing. The aim of this report is to briefly discuss some those
illumination techniques. Furthermore, this report describes the implementation of Monte Carlo method for
rendering realistic images. In addition some CPU acceleration techniques are briefly outlined.

1 Introduction

Global illumination aims to solve rendering equation 1.0 [1] in order to produce photorealistic image of a
scene. Consider a pont p on a surface of an object, which reflects light n an outgoing direction wo

(possibly in the direction of camera), the exitance radiance L(p,®,) is given by:
L(pwo) = Le(p.@o) + | /(p,00,0) Li(p, ;) |cos 6| do (1.0)
§2

where L.(p,®,) is the self emission, f(p,®,,®;) is the BRDF of the surface point which depends on the
material, L;(p,®;)is the incident radiance arriving from all directions ®; on the sphere S, around point p .
Various algorithms have been developed in order to estimate the rendering equation. In this section basic

idea of as Whitted ray tracing, radiosity, Monte Carlo ray tracing and other algorithms are discussed in
detail.

Figure 1: Exitance radiance from point p with surface normal n.

1.1 Whitted ray tracing

Whitted ray tracing [2] is a recursive method for evaluation radiance along reflected and refracted ray
directions. It is one of the early methods proposed to solve rendering equation with higher emphasis on
perfect reflection and refraction. This method is often called as backward ray-tracing because the rays
are traced from camera to the light source. If a ray hits a reflective surface then it reflects in certain
direction that makes this scheme recursive. Similarly for refractive surface. But if a ray hits diffuse
surface then the radiance of the surface point point is determined by casting ray to the light sources in the
scene (shadow rays) to determine if the point is in shadow. This kind of setup is known as local lighting
model which takes only direct illumination into account and also often results in hard shadows. Also the
recursive process is terminated as soon as the ray hits diffuse surface.

1.2 Radiosity

In Whitted ray tracing indirect illumination is not taken into account. Radiosity [3] method overcomes this
problem by considering diffuse interreflections which results in more accurate illumination. This methods
accounts for modeling of interaction of light bounced from surfaces that acts as diffuse reflector
(Lambertian model). This method is based on heat transfer and hence it is suitable for rendering diffuse
ilumination. In this method, surface elements in a scene is divided into several tiny patches and light
transport among those patches are calculated. For example consider a surface S; with emissivity E; ,

whose total of energy incident sums to B; that can be written as follows:

B;= E, +p;Y B, F (1.1)

1

where p; is reflectivity of surface i and B ; is the radiosity of another surface j and F ; form factor
of the surface j relative to surfacei. The above equation (1.1) can be computed for every patch in the
scene, in other words n simultaneous solution should be computed. The form factor usually considers
geometric relations between two patches. It can be defined as fraction of energy that leaves from one
surface to another surface with geometric realization. Such form factor is independent from changing
viewpoint and other surface attributes.

1.2 Monte Carlo ray tracing

Monte Carlo ray tracing [4] gains its advantage from its generic approach to solve rendering equation
regardless of type of a geometry with different kinds BRDF and its ability to be scaled to multiple
dimensions. Monte Carlo ray tracing is often known as Stochastic ray tracing. This method computes an
estimate of ntegral of in the rendering equation by exploiting the properties of randomness. This is done
by drawing samples using a probability distribution finction which accelerates the convergence rate. For
example, if n random samples are used to estimate the integral of a function, this method converges at
the rate of O(n~'/2). In other words to reduce the error by half, its enough to evaluate with four times

as many samples.

b
Consider one-dimensional integral [f(x)dx and uniform random variables X ; € [a,b], then

expected value of the estimator is :

=

—_b-a
1

1f(Xi) (1.2)

where N is the number of random samples, F ,, is the estimated approximation of the given
mtegral. In the above equation variance can be reduced by drawing random variables from some
arbitrary PDF p(x), then the estimator (1.2) can be written as

=

— J&X)
Fy=% 25 (1.3)

==

5

Hence choosing appropriate sampling methods plays an important role in faster convergence. Also
sampling methods affects the bias of the final result. To achieve unbiased results importance sampling
can be used for sampling the BRDF of the objects. Importance sampling is discussed in later sections

1.3 Two-pass rendering method

Two pass rendering [5] is a technique in which a rough approximation to the global illumination of the
scene computed in the first pass and computed result is first pass used in the second pass to render the
final image. Radiosity or photon mapping can be used in the first pass. In the second pass the specular
effects are captured using ray tracing which is view dependent technique such as distributed ray tracing.
While radiosity is for diffuse effects which is independent of view. Hence the method to simulate global
illummation in complex scenes with broader use of of light simulation often with progressive refinement.

1.3 Photon mapping

In Photon mapping [6] technique when a photon emitted from the light source, it is traced into the scene
using photon tracing. When a photon hits an object it can be either reflected or absorbed. Such state of
photon is determined by probabilistic methods based on the material of the surface. To determine such
mteraction type often Russian roulette is used. Initially Photon mapping was proposed for surfaces
without participating media. Photon mapping is a two pass method. In the first pass, two photon maps
are generated, they are a caustics photon map and the other one is global photon map. To generate
caustics photon map, cast photons photons only towards the specular surfaces in the scene and they are
stored as they hit diffuse surfaces. While constructing global photon map, photons are emitted towards
every objects visible in the scene. When a photon hits a surface at first intersection point store
illuminated photon and in the subsequent intersection point store shadow photon. In the second pass,
the buffered preprocess information are used to render out images. Normally this pass is divided nto
four parts as shown in equation 1.4.

Li(p,®o) = L;1(p,o) + L; y(p, @) + L; ((p, @) + L; (p,®) (1.4)

The first term in above equation 1.4 is direct illumination computation that can be estimated by tracing a
ray from the point of intersection to each light source to check the visibility of the intersection point. If
there is no mtersection is detected with other objects, the light source is used to calculate the direct
illummation. The precomputed information in global photon map in first pass can be used to reduce the
shadow rays. Hence shadow rays are casted when the closest photons in global photon map contains
direct illummation and shadow photons. The second term is diffuse indirect illumination that can be
computed using Monte Carlo ray tracing. The third term is specular illumination. The last is caustic
illummation. Last two terms are computed by estimating the radiance based on the photon maps. Often
acceleration data structures such as octree is used for scene decomposition since photon mapping is
computationally intensive.

1.3 Ray-tracing of Iso-surfaces

Iso-surface visualization has created a great impact on simulation applications. Ray tracing of
iso-surfaces has made it possible to render and visualize a complex set of data with high image quality
and with global effects. In direct ray tracing methods initially an iso-surface is extracted by computing
the intersection of rays with the provided mmplicit function. That is, by computing the mtersection of a ray
with implicit function f(x,y,z) = ¢, where c is required iso value. Later every visible intersection point is
subjected to illumination. Often Iso-surfaces are essential to understand the distribution of scalar or
vector values, for example volumetric data. Also it is an alternative to expensive isosurface extraction.
Direct illumination of iso surfaces computation is highly parallel in nature. Hence it is common practice to
use GPU acceleration for ray tracing iso-surfaces. Often spatial data structures such as octree and
kd-tree [7] are used to speed up iso surface rendering using techniques such as out-of core data
caching methods.

In this section we discussed different methods of global illumination that can be used to generate realistic
images has been discussed briefly. Rendering equation has been introduced and followed by Whitted
ray tracing method, which is a common ray tracing method. Later radiosity has been introduced which is
also one of early methods. Various recent developments in global illuminations such as Monte-carlo,
Two-pass rendering, Photon mapping and Iso surface ray tracing has been discussed. In the following
section 2, implementation of Monte Carlo ray tracing done for this project has been explained in detail.
While the results obtained using this implementation has been presented in the section 3. The section 4
contains discussion about results obtained and future enhancements. The references used n this report
can be found at the end of this report.

2 Background

In this section, my implementation of global illumination algorithm based on Monte Carlo ray tracing has
been discussed. This project is implemented using C++ and simple Cornell box scene is used for
demonstration. GLM external library is used for handling data structures such as 3d vectors and
matrices. This library also provides some convenience functions such as dot product, cross product,
transformations, vector normalization etc., Monte Carlo approximation is used for indirect lighting
computation.

2.1 Ray-Tracing Setup

To render an image it is necessary to compute the radiance of each pixel in an image plane. In our ray
tracing setup famous Cornell box setup has been used. Camera is placed mside the Cornell box.
Camera has eye position and view direction. Image plane lies perpendicular to view direction and
slightly in front of camera eye position. Care must be taken to place the camera completely mside the
box. Failure to do so will often result in rendering of front face of cornell box. For convenience box is
closed in all six faces so that rays does not escape out of the box otherwise it results in less light
contribution from the scene.

Lix—weve)

Figure 2: Scene setup with image plane. Image from Dutre, Philip, et al. Advanced global
illumination.

A ray bounced from the scene object, passing through the image plane and reaching the eye can be

represented as L, ;

Lpixer = | Le-eoyhp)dp = | Lx~eye) hip)dp (2.0)

imageP lane imageP lane

where p is a point on the image plane, and /(p) is filtering function [8]. In this implementation simple box
filter is used which is computed by averaging all incident radiance value over the area of the pixel.

In image plane each pixel located in the middle of # % n squares (or samples) where each square has
dimension of (1/n*pw, 1/n*ph) where pw and ph are pixel width and height. The points have been
chosen randomly in each squares which leads to stratified sampling with jittering. To evaluate the
rendering equation a ray is cast from the camera eye that pass through jittered point sample p on the
image plane as shown in Figure 2.

In this project each pixel has four (2 % 2) jittered sample pomts [9]. In addition scene can support
multiple area lights. Each light is presented as circular disk for convenience. Four types of geometric
primitives are support in this implementation, they are sphere, disk, cylinder and infinite plane. Infinite
planes are used to construct walls of the cornell box.

2.2 Materials

The scene consists of objects with three types of materials such as purely diffuse, purely specular and
refractive materials. In addition each objects can have color and emittance value. Light objects acts as
luminaires object. Hence emittance value is set only for lights and color of the light objects are set as
always zero. Non-luminaire objects always have emittance value zero. Refractive index has been set to
1.52 after experimenting with several values which is approximately equal to the refractive index of

glass.

2.3 Intersections and Normals

All objects used in this project are represented in the form of equation. No mesh representation is used.
Mesh geometry representation is left for future enhancements. Since all objects are represented i the
form of equation, object-ray intersection can be done faster. Also it is necessary to know normal at
mtersection point to compute illuminations. Four types of object-ray intersections are implemented in
this project. They are: Ray-Sphere, Ray-Cylinder, Ray-Circle and Ray-Infinite- Plane intersections.

The parametric form of a ray R with origin o, direction d and parameter ¢ can be represented as:
Rit) =0+ td,t=20 (2.1
In equation 2.1 negative ¢ represents intersection in the direction opposite to t which is often ignored.

And in case of no intersection | ¢ | < tolerance . tolerance = le —4 is a very small value used for
numerical approximation of zero.

2.3.1 Ray-Sphere Intersection and intersection normals

Let us assume sphere have center ¢ = (c,, c,,c.) and radius 7, then the vector equation of the sphere
can be represented as follows:

p-0o.p-c)=r* (22

where p is a point on sphere. By substituting ray equation 2.1 in the sphere equation 2.2 will result in the
following quadratic equation:

dd)f* + 2d(o-c) + (0-c)lo-c)=r* =0 (2.3)

Equation 2.3 is of the form A7*+ Bt + C =0 .Solving the above quadratic equation results two
values for ¢, which means ray itersection with sphere results in two intersection points. In such cases
mtersection point that is closest to the ray origin will be chosen. Also ifray is tangent or no intersection
then B - 44AC <0 . In this implementation additional small offset is added to the t value in order to
keep mtersection points slightly outside the sphere in order to avoid ray being trapped inside specular
objects due to small numerical precision errors. Such ray trapping can result in infinite loop. This
implementation can detect such infinite recursive ray tracing and display warning messages.

Normal N, at any intersection point p can be represented as vector normalized vector between center
of the sphere and intersection point.

N, =c—-o0+1td (24)

2.3.2 Ray-Cylinder Intersection and intersection normals

Ray cylinder intersection is slightly complex than all other intersections implemented i this project. For
every cylinder intersection, three intersection tests are performed. First mtersection is performed on
mfinite cylinder which has axis extending along bottom center to top center of the cylinder. And if
intersection is successful, further intersection test is performed on top and bottom cylinder cap (which
are basically disks). Top and bottom cap can be considered as clamping plane for infinite cylinder.
Ray-Cylinder intersection from [10] has been used i this project as reference.

This also make normal computation equally complex. Normal computation for infinite cylinder and
cylinder caps are implemented specially for this project. In order to compute normal, three cases have
to be detected:

case 1: Perform ray intersection on infinite cylinder
case 2: Perform Intersection on top cap of cylinder
case 3: Perform Intersection on bottom cap of cylinder

On case 1, the mtersection point on the cylinder is determined. Then the intersection point is projected
on to the cylinder axis. The distance between projected point and intersection point is always equal to
radius. Also normalized vector between projected point and intersection point represents the normal to
the cylinder surface. If there is no intersection detected on mfinite cylinder, then it is not required to
perform case 2 and case 3.

After performing intersection on infinite cylinder, if successful, the top and bottom cap intersection is
performed. Always shortest intersection points from the ray origin should be chosen as intersection
point. The bottom cap normal is nothing but is vector between bottom center and top cylinder and vice

versa for top cap.

The special case is, sometimes ray enters the cylinder at top cap and exits at bottom cylinder cap or
vice versa. This case is also handled.

2.3.2 Ray-Infinite-Plane Intersection and intersection normals

Let us assume that we have an infinite plane with normal vector 7 and a known point on plane p,, the

vector equation of the plane with intersection point p can be expressed as

@-py)n =0 (2.5)

Upon ray-plane intersection, we can substitute ray equation 2.1 in plane equation 2.5 which will result in
the following equation:

(td+ 0o-py)n =0 (2.6)

Equation 2.6 can be further simplified as :

_ (g-o)n
t = —an 2.7

In order to avoid division by zero d.n is computed first. In other words it checks for condition if plane
is almost parallel to ray by finding dot product between d and n. Thus we can safely determine division
by zero cases. Normal is specified during creation of plane and it is uniform all over the plane at any
intersection point.

2.3.2 Ray-Disk Intersection and intersection normals

To simplify circle intersection, Ray-Plane intersection can be reused. That is , after plane intersection,
compute the distance between resulting plane intersection point and center of the disk. If the distance
between them is less than or equal to radius of the circle, then the ray intersects with the circle. For this
reason, Disk class inherits from InfinitePlane class.

Similarly normal at every mtersection pomnt on a disk is uniform over the disk plane. Normal is specified
during creation of disk.

2.4. Radiance computation

The radiance estimate from rendering equation can be divided into two parts: direct illummation and
indirect illumination. Direct illumination considers contribution of light from light sources. While indirect
illumination considers contribution of light bounced from the other surfaces in the scene. The following
equation represents the reflected radiance as in [8]:

L(p,0) = [Le(r(p,'¥) »=) £ (0, 0o ©) cos(¥,N,) doy

+ [L@,¥) »=P) f, (0,0,) cos(¥,Ny) doy
SZ
= Ldirect (p-0,) + Lindirect (p-o,) (2.8)

where integral is done over the hemisphere S* . The ray tracing starts by shooting the rays towards the
scene from the camera eye position. When nearest intersection point of the ray in the scene is found sum
the contribution of the direct and indirect illumination at that point and recursively continue to shoot
another ray until all sample points of the image plane have been visited. The direct and indirect light
computation is explained in the following sections.

2.4. Direct lllumination

Let x be the closest intersection point of any ray projected mnto the scene. The direct illumination in
equation (2.8) considers only the direct contribution of light sources to point p and also the term
Le(r(x, ¥)——Y¥) will be non-zero at the light source, hence we can transform the hemispherical
integral into an integral over the area of the all light sources as shown figure 3 (only difference in our
scene setup is disk light sources are used). This is represented in following equation 2.9

Lix,0,) = | Le(y = %) flx,00 & 3) G(x,y) V(x,y) dd, (2.9)

Asourt?es

where x is the pomnt of intersection of ray from camera, y is random sample on light source surface.
N, and N, are surface normals at point x and y. G(x,y) is the geometric coupling factor
that represents relation between the intersection points. ¥V (x,») is the visibility of the points x
and y . V= 0 if the ray between point x and y is occluded by other other objects, otherwise
itis 1.

light source
¥

I\,
Vit

Figure 3: Direct illumination at point x. Image from Dutre, Philip, et al. Advanced global
illumination

While computing direct illumination, the radiance at point X, we cast shadow rays from the intersection
point to the light sources. Hence we draw random sample points from the surface area of all the light
sources using uniform distribution function. Applying Monte Carlo integration to approximate equation
2.9 with shadow rays leads to the following estimator in equation 2.10

NS
N — —
Lyireci(x,®0) = WL ; Ap L(y; > yix) fx, @0 © xy;) Glx,y;) V(x,p,) dd,, (2.10)

where

(Nx, V) (Nfi7 -¥)
G(x,y,-) = T) (2.11)

where NS is the shadow ray count, N, is the number of light sources, A4, 1is the area of the k light
sources in the scene, L, is the emittance value from the light source, £, is the BRDF of the surface, G
is the geometry term as in equation 2.11 and V is the visibility term. Note that integral is performed over
surface area of all the light sources. And finally W represents all vectors between our ntersection point x
and sampled points on the lights y, . Having known all the light object information in the scene, we can

easily compute all the required terms and there thus we evaluated the Monte Carlo estimator for indirect
illumination.

2.5. Indirect Illumination

light source
£ N

Figure 4: Indirect illumination at point x. This image represents recursive nature of indirect
illumination. Dotted line represents shadow rays. Image from Dutre, Philip, et al. Advanced global
illumination

Indirect illumination at an intersection point x is computed after at least one reflection at an intermediate
surface between the light sources and x. The indirect illumination term in the equation 2.9 consists the
radiance bounced from other surface pomts of the scene. The bounced radiance contains both direct
and indirect illumination. Hence this indirect illumination computation is often done recursively. Applying

Monte Carlo mtegration to indirect part of equation 2.9 leads to the following estimate for indirect
illummation computation:

L,(r(x,¥)>-¥) f,(x,0,¥) cos(¥;, N,)
p(Y)

e

~
I
—_

Lindirect(x’wo) :% (212)

Sample direction W, is generated by using importance sampling of the Phong Reflectance Model
Importance sampling has been used to reduce the variance of the random samples drawn to get a better
estimate. After tracing sample direction from point x, radiance is evaluated as L, (r(x,¥,) »—'¥,) at
the nearest ntersection point #(x,¥;) . This shows the recursive nature of indirect illumination as you
can see in figure 4.

2.6. Importance Sampling

Any objects surface can be modeled as material mixture of diffuse and specular reflection. This model
is know as Phone Reflectance model. In this project BRDF based on the Phong shading model [11] has

been used. Hence the reflectance distribution ofa is divided into a diffuse and specular component:

where o is the angle formed between specular direction and the outgoing ray direction. &, is the diffuse
reflectivity, k, is the specular reflectivity and » is the specular exponent commonly used in Phong
models. Russian roulette [8] to determine whether to compute diffuse or specular component. This is
done by following steps:

1) Generate a random variable with uniform distribution function » € [0, 1].

2) If 7 is smaller than &, we take a diffuse sample and compute its contribution.

3) If is bigger than &, and smaller than k; + k, then a specular reflection or refraction is computed.
4) If r is bigger than k; + k ,, the ray is absorbed and the recursion is terminated.

The diffuse component of Phong brdf'scaled by the cosine of incoming angle gives the pdfas
pdf(©,) = 71; cos(0,) (2.13)

This pdf can be sampled by selecting two uniform random variable », and r, over the mterval [0, 1]
. This pdf can be represented in spherical coordinate system as in equation 2.14.

0,0) = (arccos(\/ﬂ, 2nr,) (2.14)

0 and ® are Similarly specular component of Phong brdfhas following distribution as in equation
2.15 and corresponding spherical coordinate transformation as in equation 2.16 , where »/ and »2 are
two uniform random variables over the interval [0, 1].

pdf(®,) = % cos™(a) (2.15)
0,D) = (arccos(r, Fi'1), 2nry) (2.16)

The diffuse and specular samples in equation 2.14 and 2.16 are in hemispherical coordinates, while the
cartesian representation of the same is as follows:

(x,y,2) = (sin(0) cos(D), sin(0) sin(®), cos(®)) (2.17)

Necessary co-ordinate transformations are performed on the cartesian representation in equation 2.17
to make the sample points align with basis vectors generated from normal direction of the intersection
pomt. The refraction rays are computed using Snell’s law. If ray enters from higher refractive index to
lower refractive index it should account for total internal reflections. Thus generating two random
variables for each method, we can obtain the random direction vector over the hemisphere.

3 Results and Benchmark

The scene is completely created using code in C++. No external mesh geometry has been used for this
demonstration. Different scene settings has been tested in this project such as diffuse only, indirect
illummation only, multiple lights, region rendering and colored lights. Also CPU parallelization has been
done per pixel using OpenMP which does not take load balancing into account. In addition, easy
inspection of specific region on image plane has been implemented and supports rectangular region
rendering as shown in the Figure 10. All images are rendered at 512x384 resolution.

Figure 5: Computation of indirect illumination using 1 ray per pixel-sample (top-left) , 32 rays per
pixel-sample (top-right), 128 rays per pixel-sample (bottom-left) and 256 rays per pixel-sample
(bottom-right).

Figure 5 illustrates a scene containing diffuse objects only with indirect illumination. This test is
performed to get understanding of rate of reduction in noise level in the images as rays per pixel-sample
increased and also it can be observed that color bleeding is becoming more visible. As the ray per pixel
rate is increased the noise level in the image started decreasing, thereby reaching convergence. Light is a
luminaire disk object which is the brightest of all objects due to self emittance component. Also some
soft shadow effects can be observed at this stage. The computation time of diffuse only indirect
illummation is represented in the Figure 9.

Figure 6. Computation of direct illumination using 1 ray per pixel-sample (top-left) , 32 rays per
pixel-sample (top-right), 128 rays per pixel-sample (bottom-left) and 256 rays per pixel-sample
(bottom-right).

Figure 6 illustrates similar settings to the previous figure 5. But only modification is, it involves
computation of direct illumination only with two random shadow rays per light object. By using more
shadow rays, the hard shadows can be shifted to soft shadows during direct illumination. In other
words image can get better shadows if more shadow rays are generated towards light sources. The
variable number of shadow rays are tested in later scene settings. Also time measure has been presented
in graph of Figure 8. The computation becomes expensive especially when it is combined with indirect
illummnation. Figure 7 represents scene with combined direct and indirect illumination with multiple lights.
Better color bleeding effects and soft shadows are traits of indirect illumination which is still preserved
and blended nicely with the direct illumination.Finally Figure 9 illustrates full scene with all three types of
materials in effect. Because of Russian Roulette method an unbiased image is resulted. Pure specular
object placed in the scene produced nice reflection of the scene. Hence it is placed at the end of the
room. Thus all required results generated in this project are presented.

Figure 7: Computation of direct and indirect illumination using 1 ray per pixel-sample (top-left) ,
32 rays per pixel-sample (top-right), 128 rays per pixel-sample (bottom-left) and 256 rays per
pixel-sample (bottom-right).

Figure 8: Computation of direct and indirect illumination with multiple lights, all three types of
material in effect and using 1 ray per pixel-sample (top-left) , 32 rays per pixel-sample (top-right),
128 rays per pixel-sample (bottom-left) and 256 rays per pixel-sample (bottom-right).

GO0

4500

Time in seconds
2
E]
ZEh-rays

1500
a — e
Rays per Pelsample
M Dircct illumanation (Oiftusey [Oirect ilamination (Oiftase) InDirect + Direct (Oittuse) W InDwnect + Direet |Difuse+SpecuwartActractive)

Figure 9: Time measure for scene settings in Figure 5, 6, 7 and 8. Images are rendered in 512x384
resolution. All these settings are tested with 1,32,128 and 256 rays per pixel-sample of the image.

Figure 10: Example region rendering (left). Simple scene with colored lights (right)

4 Discussions

In this project various rendering techniques have been introduced and discussed. In the later section
implementation of Monte Carlo renderer have been explained in detail. In the result section, images
generated using this implementation have been furnished. Many ntermediate results are generated with
different settings and furnished with a notion to analyze the effects added at important stages of this
Monte Carlo of method. Important and final result is the Figure 7, that combines the direct and indirect
illumination. This step is necessary so that rate of convergence can be increased. Figure 8 demonstrates
the capability of the implemented renderer to support all three types of material objects such as diffuse,
specular and refraction.

In order to extend this project, bidirectional path tracing can be adopted easily with less changes to
source code. One of the main disadvantages of Monte Carlo renderer is that it cannot simulate caustics.
Also more effective methods can be adopted to reduce the noise. For instance adaptive sampling can
result in better image. Also techniques such as final gathering can reduce the noise by blurring the image.
Various material models have to be tested. And further, this system can be adopted to import geometry
meshes (which would require data acceleration structures such as octree and kd-tree for scene
decomposition) and can be subjected to more rigorous benchmark performance analysis.

Some implementations often enable caching to avoid duplications in random number generation. But for
simplicity such methods are not used in this implementation. Also during recursive tracing, often due to
some numerical errors or improper scene setting, infinite looping occurs. This can be avoided by
checking current depth of recursion with allowed maximum depth. This check was very useful to catch
potential bugs. Though the current implementation uses CPU parallelization, there is plenty of room to
optimize the implementation further both n CPU and GPU. But it would require additional changes in
data structure organization. Often hybrid CPU and GPU acceleration are suitable for algorithms such as
raytracing. Such adaptations will be the immediate step for future enhancement. Also recursive nature of
algorithm will be the first barrier that one should overcome in order to adopt parallel optimizations.
Current project supports region rendering but only one region at a time. Adding multiple region
rendering can be useful feature for debugging.

The overall result of the project is satisfying because the core rendering algorithm is stable and have
produced expected results. And also the project is implemented in C++ with some sense of objected
oriented programming exploiting polymorphism. Hence the project can be extended further easily.

5 References

10.
11.

James T. Kajiya. 1986. The rendering equation. In Proceedings of the 13th annual conference
on Computer graphics and interactive techniques (SIGGRAPH '86), David C. Evans and
Russell J. Athay (Eds.). ACM, New York, NY, USA, 143-150.
Turner Whitted. 1980. An improved illumination model for shaded display. Commun. ACM 23,
6 (June 1980), 343-349.
Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. 1984.
Modeling the interaction of light between diffuse surfaces. In Proceedings of the 11th annual
conference on Computer graphics and interactive techniques (SIGGRAPH '84), Hank
Christiansen (Ed.). ACM, New York, NY, USA, 213-222.
Philip Dutre, Henrik Wann Jensen, Jim Arvo, Kavita Bala, Philippe Bekaert, Steve Marschner,
and Matt Pharr. 2004. State ofthe art in Monte Carlo global illummnation. In ACM SIGGRAPH
2004 Course Notes (SIGGRAPH '04). ACM, New York, NY, USA, Article 5.
F. Sillion and C. Puech. 1989. A general two-pass method integrating specular and diffuse
reflection. In Proceedings of the 16th annual conference on Computer graphics and interactive
techniques (SIGGRAPH '89). ACM, New York, NY, USA, 335-344.
Henrik Wann Jensen, Global illummation using photon maps, Proceedings of the eurographics
workshop on Rendering techniques '96, p.21-30, December 1996, Porto, Portugal.
Wald, L.; Friedrich, H.; Marmitt, G.; Slusallek, P.; Seidel, H.-P.; , "Faster isosurface ray tracing
using implicit KD-trees," Visualization and Computer Graphics, IEEE Transactions on, vol.11,
no.5, pp.562-572, Sept.-Oct. 2005.

Philippe Bekaert Philip Dutre, Kavita Bala. Advanced Global Illumination 2™ edition. AK
Peters, 2006.

Peter Shirley, R. Keith Morley. Realistic Ray Tracing 2™ edition. AK Peters, Natick
Massachusetts, 2003.
Arvo, James, ed. Graphics Gems Two. Vol. 2. Morgan Kaufimann, 1991.

E. Lafortune and Y. Willems. Using the modified Phong reflectance model for physically based
rendering. Technical Report CW197, Dept. Comp. Sci., K.U. Leuven, 1994.

