
Monte Carlo Ray-tracing
Advanced Global Illumination And Rendering (TNCG15)

Sathish Kottravel (satko730)

January 2014

Linköping University

Abstract

Photorealistic image generation is a paradigm that has various applications in the field of computer

graphics such as film and visual effects, architecture, computer games etc.,. In computer graphics

photorealistic image generation is achieved using various types of algorithms. These algorithms intend to

solve rendering equation which derives its basis from light transport formulation. Global illumination has

become key component of such algorithms as it considers both direct lighting (direct illumination) from the

light sources and the contribution of light bounced from other surfaces lit in the scene (indirect

illumination). Many methods have been developed to estimate the rendering equation such as Whitted ray

tracing, Radiosity, and Monte Carlo path tracing. The aim of this report is to briefly discuss some those

illumination techniques. Furthermore, this report describes the implementation of Monte Carlo method for

rendering realistic images. In addition some CPU acceleration techniques are briefly outlined.

1 Introduction

Global illumination aims to solve rendering equation 1.0 [1] in order to produce photorealistic image of a

scene. Consider a point on a surface of an object, which reflects light in an outgoing direction p oω

(possibly in the direction of camera), the exitance radiance is given by:(p,)L ωo

(p,) L (p,) (p, ,) L (p,) (1.0) L ωo = e ωo + ∫

s2

f ωo ωi i ωi cos θ ∣
∣ i

 ∣
∣
dωi

where is the self emission, is the BRDF of the surface point which depends on the (p,) Le ωo (p, ,)f ωo ωi

material, is the incident radiance arriving from all directions on the sphere around point . (p,)Li ωi ωi S2 p

Various algorithms have been developed in order to estimate the rendering equation. In this section basic

idea of as Whitted ray tracing, radiosity, Monte Carlo ray tracing and other algorithms are discussed in

detail.

Figure 1: Exitance radiance from point with surface normal .p n

1.1 Whitted ray tracing

Whitted ray tracing [2] is a recursive method for evaluation radiance along reflected and refracted ray

directions. It is one of the early methods proposed to solve rendering equation with higher emphasis on

perfect reflection and refraction. This method is often called as backward ray-tracing because the rays

are traced from camera to the light source. If a ray hits a reflective surface then it reflects in certain

direction that makes this scheme recursive. Similarly for refractive surface. But if a ray hits diffuse

surface then the radiance of the surface point point is determined by casting ray to the light sources in the

scene (shadow rays) to determine if the point is in shadow. This kind of setup is known as local lighting

model which takes only direct illumination into account and also often results in hard shadows. Also the

recursive process is terminated as soon as the ray hits diffuse surface.

1.2 Radiosity

In Whitted ray tracing indirect illumination is not taken into account. Radiosity [3] method overcomes this

problem by considering diffuse interreflections which results in more accurate illumination. This methods

accounts for modeling of interaction of light bounced from surfaces that acts as diffuse reflector

(Lambertian model). This method is based on heat transfer and hence it is suitable for rendering diffuse

illumination. In this method, surface elements in a scene is divided into several tiny patches and light

transport among those patches are calculated. For example consider a surface with emissivity , S i E i

whose total of energy incident sums to that can be written as follows:B i

B E B F (1.1) i = i + ρi ∑

 j ij

where is reflectivity of surface and is the radiosity of another surface and form factor ρ i i Bj j F ij

of the surface relative to surface . The above equation (1.1) can be computed for every patch in the j i

scene, in other words simultaneous solution should be computed. The form factor usually considers n

geometric relations between two patches. It can be defined as fraction of energy that leaves from one

surface to another surface with geometric realization. Such form factor is independent from changing

viewpoint and other surface attributes.

1.2 Monte Carlo ray tracing

Monte Carlo ray tracing [4] gains its advantage from its generic approach to solve rendering equation

regardless of type of a geometry with different kinds BRDF and its ability to be scaled to multiple

dimensions. Monte Carlo ray tracing is often known as Stochastic ray tracing. This method computes an

estimate of integral of in the rendering equation by exploiting the properties of randomness. This is done

by drawing samples using a probability distribution function which accelerates the convergence rate. For

example, if n random samples are used to estimate the integral of a function, this method converges at

the rate of . In other words to reduce the error by half, its enough to evaluate with four times (n) O 1 2− /

as many samples.

Consider one-dimensional integral and uniform random variables , then (x) dx∫
b

a

f a,] X i ∈ [b

expected value of the estimator is :

 (X) (1.2) F N =
N

b a− ∑
N

i=1

f i

where is the number of random samples, is the estimated approximation of the givenN F N

integral. In the above equation variance can be reduced by drawing random variables from some

arbitrary PDF , then the estimator (1.2) can be written as(x) p

 (1.3) F N = 1
N ∑

N

i=1

f (X) i

p(X) i

Hence choosing appropriate sampling methods plays an important role in faster convergence. Also

sampling methods affects the bias of the final result. To achieve unbiased results importance sampling

can be used for sampling the BRDF of the objects. Importance sampling is discussed in later sections

1.3 Two-pass rendering method

Two pass rendering [5] is a technique in which a rough approximation to the global illumination of the

scene computed in the first pass and computed result is first pass used in the second pass to render the

final image. Radiosity or photon mapping can be used in the first pass. In the second pass the specular

effects are captured using ray tracing which is view dependent technique such as distributed ray tracing.

While radiosity is for diffuse effects which is independent of view. Hence the method to simulate global

illumination in complex scenes with broader use of of light simulation often with progressive refinement.

1.3 Photon mapping

In Photon mapping [6] technique when a photon emitted from the light source, it is traced into the scene

using photon tracing. When a photon hits an object it can be either reflected or absorbed. Such state of

photon is determined by probabilistic methods based on the material of the surface. To determine such

interaction type often Russian roulette is used. Initially Photon mapping was proposed for surfaces

without participating media. Photon mapping is a two pass method. In the first pass, two photon maps

are generated, they are a caustics photon map and the other one is global photon map. To generate

caustics photon map, cast photons photons only towards the specular surfaces in the scene and they are

stored as they hit diffuse surfaces. While constructing global photon map, photons are emitted towards

every objects visible in the scene. When a photon hits a surface at first intersection point store

illuminated photon and in the subsequent intersection point store shadow photon. In the second pass,

the buffered preprocess information are used to render out images. Normally this pass is divided into

four parts as shown in equation 1.4.

(p,) L (p,) L (p,) L (p,) L (p,) (1.4) Li ωo = i,1 ωo + i,d ωo + i,s ωo + i,c ωo

The first term in above equation 1.4 is direct illumination computation that can be estimated by tracing a

ray from the point of intersection to each light source to check the visibility of the intersection point. If

there is no intersection is detected with other objects, the light source is used to calculate the direct

illumination. The precomputed information in global photon map in first pass can be used to reduce the

shadow rays. Hence shadow rays are casted when the closest photons in global photon map contains

direct illumination and shadow photons. The second term is diffuse indirect illumination that can be

computed using Monte Carlo ray tracing. The third term is specular illumination. The last is caustic

illumination. Last two terms are computed by estimating the radiance based on the photon maps. Often

acceleration data structures such as octree is used for scene decomposition since photon mapping is

computationally intensive.

1.3 Ray-tracing of Iso-surfaces

Iso-surface visualization has created a great impact on simulation applications. Ray tracing of

iso-surfaces has made it possible to render and visualize a complex set of data with high image quality

and with global effects. In direct ray tracing methods initially an iso-surface is extracted by computing

the intersection of rays with the provided implicit function. That is, by computing the intersection of a ray

with implicit function f(x,y,z) = c, where c is required iso value. Later every visible intersection point is

subjected to illumination. Often Iso-surfaces are essential to understand the distribution of scalar or

vector values, for example volumetric data. Also it is an alternative to expensive isosurface extraction.

Direct illumination of iso surfaces computation is highly parallel in nature. Hence it is common practice to

use GPU acceleration for ray tracing iso-surfaces. Often spatial data structures such as octree and

kd-tree [7] are used to speed up iso surface rendering using techniques such as out-of core data

caching methods.

In this section we discussed different methods of global illumination that can be used to generate realistic

images has been discussed briefly. Rendering equation has been introduced and followed by Whitted

ray tracing method, which is a common ray tracing method. Later radiosity has been introduced which is

also one of early methods. Various recent developments in global illuminations such as Monte-carlo,

Two-pass rendering, Photon mapping and Iso surface ray tracing has been discussed. In the following

section 2, implementation of Monte Carlo ray tracing done for this project has been explained in detail.

While the results obtained using this implementation has been presented in the section 3. The section 4

contains discussion about results obtained and future enhancements. The references used in this report

can be found at the end of this report.

2 Background

In this section, my implementation of global illumination algorithm based on Monte Carlo ray tracing has

been discussed. This project is implemented using C++ and simple Cornell box scene is used for

demonstration. GLM external library is used for handling data structures such as 3d vectors and

matrices. This library also provides some convenience functions such as dot product, cross product,

transformations, vector normalization etc., Monte Carlo approximation is used for indirect lighting

computation.

2.1 Ray-Tracing Setup

To render an image it is necessary to compute the radiance of each pixel in an image plane. In our ray

tracing setup famous Cornell box setup has been used. Camera is placed inside the Cornell box.

Camera has eye position and view direction. Image plane lies perpendicular to view direction and

slightly in front of camera eye position. Care must be taken to place the camera completely inside the

box. Failure to do so will often result in rendering of front face of cornell box. For convenience box is

closed in all six faces so that rays does not escape out of the box otherwise it results in less light

contribution from the scene.

Figure 2: Scene setup with image plane. Image from Dutre, Philip, et al. Advanced global

illumination.

A ray bounced from the scene object, passing through the image plane and reaching the eye can be

represented as :Lpixel

 L(p ye) h(p) dp L(x ye) h(p) dp (2.0)Lpixel = ∫

imageP lane

 → e = ∫

imageP lane

 → e

where p is a point on the image plane, and h(p) is filtering function [8]. In this implementation simple box

filter is used which is computed by averaging all incident radiance value over the area of the pixel.

In image plane each pixel located in the middle of squares (or samples) where each square has n * n

dimension of (1/n*pw, 1/n*ph) where pw and ph are pixel width and height. The points have been

chosen randomly in each squares which leads to stratified sampling with jittering. To evaluate the

rendering equation a ray is cast from the camera eye that pass through jittered point sample p on the

image plane as shown in Figure 2.

In this project each pixel has four () jittered sample points [9]. In addition scene can support 2 * 2

multiple area lights. Each light is presented as circular disk for convenience. Four types of geometric

primitives are support in this implementation, they are sphere, disk, cylinder and infinite plane. Infinite

planes are used to construct walls of the cornell box.

2.2 Materials

The scene consists of objects with three types of materials such as purely diffuse, purely specular and

refractive materials. In addition each objects can have color and emittance value. Light objects acts as

luminaires object. Hence emittance value is set only for lights and color of the light objects are set as

always zero. Non-luminaire objects always have emittance value zero. Refractive index has been set to

1.52 after experimenting with several values which is approximately equal to the refractive index of

glass.

2.3 Intersections and Normals

All objects used in this project are represented in the form of equation. No mesh representation is used.

Mesh geometry representation is left for future enhancements. Since all objects are represented in the

form of equation, object-ray intersection can be done faster. Also it is necessary to know normal at

intersection point to compute illuminations. Four types of object-ray intersections are implemented in

this project. They are: Ray-Sphere, Ray-Cylinder, Ray-Circle and Ray-Infinite-Plane intersections.

The parametric form of a ray R with origin o, direction d and parameter t can be represented as:

(t) o t d, t (2.1) R = + ≥ 0

In equation 2.1 negative t represents intersection in the direction opposite to t which is often ignored.

And in case of no intersection . is a very small value used for t ∣ olerance ∣ ≤ t olerance 1e t = − 4

numerical approximation of zero.

2.3.1 Ray-Sphere Intersection and intersection normals

Let us assume sphere have center and radius , then the vector equation of the sphere c , ,)c = (x cy cz r

can be represented as follows:

p).(p) (2.2) (− c − c = r2

where p is a point on sphere. By substituting ray equation 2.1 in the sphere equation 2.2 will result in the

following quadratic equation:

d.d)t 2d.(o)t (o).(o) 0 (2.3) (2 + − c + − c − c − r2 =

Equation 2.3 is of the form .Solving the above quadratic equation results two t Bt C A 2 + + = 0

values for t, which means ray intersection with sphere results in two intersection points. In such cases

intersection point that is closest to the ray origin will be chosen. Also if ray is tangent or no intersection

then . In this implementation additional small offset is added to the t value in order to 4AC B − < 0

keep intersection points slightly outside the sphere in order to avoid ray being trapped inside specular

objects due to small numerical precision errors. Such ray trapping can result in infinite loop. This

implementation can detect such infinite recursive ray tracing and display warning messages.

Normal at any intersection point can be represented as vector normalized vector between center N p p

of the sphere and intersection point.

 o t d (2.4) N p = c − +

2.3.2 Ray-Cylinder Intersection and intersection normals

Ray cylinder intersection is slightly complex than all other intersections implemented in this project. For

every cylinder intersection, three intersection tests are performed. First intersection is performed on

infinite cylinder which has axis extending along bottom center to top center of the cylinder. And if

intersection is successful, further intersection test is performed on top and bottom cylinder cap (which

are basically disks). Top and bottom cap can be considered as clamping plane for infinite cylinder.

Ray-Cylinder intersection from [10] has been used in this project as reference.

This also make normal computation equally complex. Normal computation for infinite cylinder and

cylinder caps are implemented specially for this project. In order to compute normal, three cases have

to be detected:

case 1: Perform ray intersection on infinite cylinder

case 2: Perform Intersection on top cap of cylinder

case 3: Perform Intersection on bottom cap of cylinder

On case 1, the intersection point on the cylinder is determined. Then the intersection point is projected

on to the cylinder axis. The distance between projected point and intersection point is always equal to

radius. Also normalized vector between projected point and intersection point represents the normal to

the cylinder surface. If there is no intersection detected on infinite cylinder, then it is not required to

perform case 2 and case 3.

After performing intersection on infinite cylinder, if successful, the top and bottom cap intersection is

performed. Always shortest intersection points from the ray origin should be chosen as intersection

point. The bottom cap normal is nothing but is vector between bottom center and top cylinder and vice

versa for top cap.

The special case is, sometimes ray enters the cylinder at top cap and exits at bottom cylinder cap or

vice versa. This case is also handled.

2.3.2 Ray-Infinite-Plane Intersection and intersection normals

Let us assume that we have an infinite plane with normal vector and a known point on plane the n p0

vector equation of the plane with intersection point can be expressed asp

p).n (2.5) (− p0 = 0

Upon ray-plane intersection, we can substitute ray equation 2.1 in plane equation 2.5 which will result in

the following equation:

td o).n (2.6) (+ − p0 = 0

Equation 2.6 can be further simplified as :

(2.7) t =
d.n

 (p o).n0 −

In order to avoid division by zero is computed first. In other words it checks for condition if plane .nd

is almost parallel to ray by finding dot product between d and n. Thus we can safely determine division

by zero cases. Normal is specified during creation of plane and it is uniform all over the plane at any

intersection point.

2.3.2 Ray-Disk Intersection and intersection normals

To simplify circle intersection, Ray-Plane intersection can be reused. That is , after plane intersection,

compute the distance between resulting plane intersection point and center of the disk. If the distance

between them is less than or equal to radius of the circle, then the ray intersects with the circle. For this

reason, Disk class inherits from InfinitePlane class.

Similarly normal at every intersection point on a disk is uniform over the disk plane. Normal is specified

during creation of disk.

2.4. Radiance computation

The radiance estimate from rendering equation can be divided into two parts: direct illumination and

indirect illumination. Direct illumination considers contribution of light from light sources. While indirect

illumination considers contribution of light bounced from the other surfaces in the scene. The following

equation represents the reflected radiance as in [8]:

(p,) (r(p,)) f (p,) cos(Ψ,) dω Lr ωo = ∫

s2

Le Ψ →− Ψ r ωo ↔ Ψ N x Ψ

 (r(p,)) f (p,) cos(Ψ,) dω + ∫

s2

Lr Ψ →− Ψ r ωo ↔ Ψ N x Ψ

 L (2.8) = Ldirect (p→ω)o
+ indirect (p→ω) o

where integral is done over the hemisphere . The ray tracing starts by shooting the rays towards the S2

scene from the camera eye position. When nearest intersection point of the ray in the scene is found sum

the contribution of the direct and indirect illumination at that point and recursively continue to shoot

another ray until all sample points of the image plane have been visited. The direct and indirect light

computation is explained in the following sections.

2.4. Direct Illumination

Let x be the closest intersection point of any ray projected into the scene. The direct illumination in

equation (2.8) considers only the direct contribution of light sources to point p and also the term

will be non-zero at the light source, hence we can transform the hemispherical(r(x, Ψ)→−Ψ) Le

integral into an integral over the area of the all light sources as shown figure 3 (only difference in our

scene setup is disk light sources are used). This is represented in following equation 2.9

(x,) (y) f (x,) G(x,) V (x,) dA (2.9)Lr ωo = ∫

Asources

Le → yx r ωo ↔ xy y y y

where x is the point of intersection of ray from camera, y is random sample on light source surface.

are surface normals at point x and y. is the geometric coupling factor and N Nx x (x,) G y

that represents relation between the intersection points. is the visibility of the points x (x,) V y

and y . V = 0 if the ray between point x and y is occluded by other other objects, otherwise

it is 1.

Figure 3: Direct illumination at point x. Image from Dutre, Philip, et al. Advanced global
illumination

While computing direct illumination, the radiance at point x, we cast shadow rays from the intersection

point to the light sources. Hence we draw random sample points from the surface area of all the light

sources using uniform distribution function. Applying Monte Carlo integration to approximate equation

2.9 with shadow rays leads to the following estimator in equation 2.10

(x,) (y) f (x,) G(x,) V (x,) dA (2.10)Ldirect ωo = N

NL ∑
NS

i=1
 A LLk e i → y x i r ωo ↔ xy i yi yi yi

where

 (x,) (2.11)G yi =
r2
xyi

(N , Ψ) (N , Ψ) x yi −

where NS is the shadow ray count, is the number of light sources, i s the area of the k light N L ALk

sources in the scene, is the emittance value from the light source, is the BRDF of the surface, G Le f r

is the geometry term as in equation 2.11 and V is the visibility term. Note that integral is performed over

surface area of all the light sources. And finally Ψ represents all vectors between our intersection point x

and sampled points on the lights . Having known all the light object information in the scene, we can yi

easily compute all the required terms and there thus we evaluated the Monte Carlo estimator for indirect

illumination.

 2.5. Indirect Illumination

Figure 4: Indirect illumination at point x. This image represents recursive nature of indirect
illumination. Dotted line represents shadow rays. Image from Dutre, Philip, et al. Advanced global
illumination

Indirect illumination at an intersection point x is computed after at least one reflection at an intermediate

surface between the light sources and x. The indirect illumination term in the equation 2.9 consists the

radiance bounced from other surface points of the scene. The bounced radiance contains both direct

and indirect illumination. Hence this indirect illumination computation is often done recursively. Applying

Monte Carlo integration to indirect part of equation 2.9 leads to the following estimate for indirect

illumination computation:

(x,) (2.12)Lindirect ωo = 1
N ∑

N

i=1
p(Ψ)i

L (r(x,Ψ)→ Ψ) f (x,ω ↔Ψ) cos(Ψ , N) r i − i r o i i x

Sample direction is generated by using importance sampling of the Phong Reflectance Model. Ψi

Importance sampling has been used to reduce the variance of the random samples drawn to get a better

estimate. After tracing sample direction from point x, radiance is evaluated as at (r(x,)) Lr Ψi →−Ψi

the nearest intersection point . This shows the recursive nature of indirect illumination as you (x,) r Ψi

can see in figure 4.

 2.6. Importance Sampling

Any objects surface can be modeled as material mixture of diffuse and specular reflection. This model

is know as Phone Reflectance model. In this project BRDF based on the Phong shading model [11] has

been used. Hence the reflectance distribution of a is divided into a diffuse and specular component:

where is the angle formed between specular direction and the outgoing ray direction. is the diffuse α kd

reflectivity, is the specular reflectivity and n is the specular exponent commonly used in Phong k s

models. Russian roulette [8] to determine whether to compute diffuse or specular component. This is

done by following steps:

1) Generate a random variable with uniform distribution function . ε [0,] r 1

2) If r is smaller than we take a diffuse sample and compute its contribution.kd

3) If r is bigger than and smaller than then a specular reflection or refraction is computed.kd k k s + d

4) If r is bigger than , the ray is absorbed and the recursion is terminated. k k s + d

The diffuse component of Phong brdf scaled by the cosine of incoming angle gives the pdf as

df (θ) cos(θ) (2.13) p i =
π
1

i

This pdf can be sampled by selecting two uniform random variable and over the interval r1 r2 0,] [1

. This pdf can be represented in spherical coordinate system as in equation 2.14.

θ,) arccos(), 2πr) (2.14) (Φ = (√r1 2

 are Similarly specular component of Phong brdf has following distribution as in equation θ and Φ

2.15 and corresponding spherical coordinate transformation as in equation 2.16 , where r1 and r2 are

two uniform random variables over the interval .0,] [1

 df (θ) cos (α) (2.15) p i =
2π
n+1 n

θ,) arccos(r), 2πr) (2.16) (Φ = (1

1
n+1 2

The diffuse and specular samples in equation 2.14 and 2.16 are in hemispherical coordinates, while the

cartesian representation of the same is as follows:

x, ,) sin(θ) cos(Φ), sin(θ) sin(Φ), cos(θ)) (2.17) (y z = (

Necessary co-ordinate transformations are performed on the cartesian representation in equation 2.17

to make the sample points align with basis vectors generated from normal direction of the intersection

point. The refraction rays are computed using Snell’s law. If ray enters from higher refractive index to

lower refractive index it should account for total internal reflections. Thus generating two random

variables for each method, we can obtain the random direction vector over the hemisphere.

3 Results and Benchmark

The scene is completely created using code in C++. No external mesh geometry has been used for this

demonstration. Different scene settings has been tested in this project such as diffuse only, indirect

illumination only, multiple lights, region rendering and colored lights. Also CPU parallelization has been

done per pixel using OpenMP which does not take load balancing into account. In addition, easy

inspection of specific region on image plane has been implemented and supports rectangular region

rendering as shown in the Figure 10. All images are rendered at 512x384 resolution.

Figure 5: Computation of indirect illumination using 1 ray per pixel-sample (top-left) , 32 rays per

pixel-sample (top-right), 128 rays per pixel-sample (bottom-left) and 256 rays per pixel-sample

(bottom-right).

Figure 5 illustrates a scene containing diffuse objects only with indirect illumination. This test is

performed to get understanding of rate of reduction in noise level in the images as rays per pixel-sample

increased and also it can be observed that color bleeding is becoming more visible. As the ray per pixel

rate is increased the noise level in the image started decreasing, thereby reaching convergence. Light is a

luminaire disk object which is the brightest of all objects due to self emittance component. Also some

soft shadow effects can be observed at this stage. The computation time of diffuse only indirect

illumination is represented in the Figure 9.

Figure 6: Computation of direct illumination using 1 ray per pixel-sample (top-left) , 32 rays per
pixel-sample (top-right), 128 rays per pixel-sample (bottom-left) and 256 rays per pixel-sample
(bottom-right).

Figure 6 illustrates similar settings to the previous figure 5. But only modification is, it involves

computation of direct illumination only with two random shadow rays per light object. By using more

shadow rays, the hard shadows can be shifted to soft shadows during direct illumination. In other

words image can get better shadows if more shadow rays are generated towards light sources. The

variable number of shadow rays are tested in later scene settings. Also time measure has been presented

in graph of Figure 8. The computation becomes expensive especially when it is combined with indirect

illumination. Figure 7 represents scene with combined direct and indirect illumination with multiple lights.

Better color bleeding effects and soft shadows are traits of indirect illumination which is still preserved

and blended nicely with the direct illumination.Finally Figure 9 illustrates full scene with all three types of

materials in effect. Because of Russian Roulette method an unbiased image is resulted. Pure specular

object placed in the scene produced nice reflection of the scene. Hence it is placed at the end of the

room. Thus all required results generated in this project are presented.

Figure 7: Computation of direct and indirect illumination using 1 ray per pixel-sample (top-left) ,
32 rays per pixel-sample (top-right), 128 rays per pixel-sample (bottom-left) and 256 rays per
pixel-sample (bottom-right).

Figure 8: Computation of direct and indirect illumination with multiple lights, all three types of
material in effect and using 1 ray per pixel-sample (top-left) , 32 rays per pixel-sample (top-right),
128 rays per pixel-sample (bottom-left) and 256 rays per pixel-sample (bottom-right).

Figure 9: Time measure for scene settings in Figure 5, 6, 7 and 8. Images are rendered in 512x384
resolution. All these settings are tested with 1,32,128 and 256 rays per pixel-sample of the image.

Figure 10: Example region rendering (left). Simple scene with colored lights (right)

4 Discussions

In this project various rendering techniques have been introduced and discussed. In the later section

implementation of Monte Carlo renderer have been explained in detail. In the result section, images

generated using this implementation have been furnished. Many intermediate results are generated with

different settings and furnished with a notion to analyze the effects added at important stages of this

Monte Carlo of method. Important and final result is the Figure 7, that combines the direct and indirect

illumination. This step is necessary so that rate of convergence can be increased. Figure 8 demonstrates

the capability of the implemented renderer to support all three types of material objects such as diffuse,

specular and refraction.

In order to extend this project, bidirectional path tracing can be adopted easily with less changes to

source code. One of the main disadvantages of Monte Carlo renderer is that it cannot simulate caustics.

Also more effective methods can be adopted to reduce the noise. For instance adaptive sampling can

result in better image. Also techniques such as final gathering can reduce the noise by blurring the image.

Various material models have to be tested. And further, this system can be adopted to import geometry

meshes (which would require data acceleration structures such as octree and kd-tree for scene

decomposition) and can be subjected to more rigorous benchmark performance analysis.

Some implementations often enable caching to avoid duplications in random number generation. But for

simplicity such methods are not used in this implementation. Also during recursive tracing, often due to

some numerical errors or improper scene setting, infinite looping occurs. This can be avoided by

checking current depth of recursion with allowed maximum depth. This check was very useful to catch

potential bugs. Though the current implementation uses CPU parallelization, there is plenty of room to

optimize the implementation further both in CPU and GPU. But it would require additional changes in

data structure organization. Often hybrid CPU and GPU acceleration are suitable for algorithms such as

raytracing. Such adaptations will be the immediate step for future enhancement. Also recursive nature of

algorithm will be the first barrier that one should overcome in order to adopt parallel optimizations.

Current project supports region rendering but only one region at a time. Adding multiple region

rendering can be useful feature for debugging.

The overall result of the project is satisfying because the core rendering algorithm is stable and have

produced expected results. And also the project is implemented in C++ with some sense of objected

oriented programming exploiting polymorphism. Hence the project can be extended further easily.

5 References

1. James T. Kajiya. 1986. The rendering equation. In Proceedings of the 13th annual conference

on Computer graphics and interactive techniques (SIGGRAPH '86), David C. Evans and

Russell J. Athay (Eds.). ACM, New York, NY, USA, 143-150.

2. Turner Whitted. 1980. An improved illumination model for shaded display. Commun. ACM 23,

6 (June 1980), 343-349.

3. Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. 1984.

Modeling the interaction of light between diffuse surfaces. In Proceedings of the 11th annual

conference on Computer graphics and interactive techniques (SIGGRAPH '84), Hank

Christiansen (Ed.). ACM, New York, NY, USA, 213-222.

4. Philip Dutre, Henrik Wann Jensen, Jim Arvo, Kavita Bala, Philippe Bekaert, Steve Marschner,

and Matt Pharr. 2004. State of the art in Monte Carlo global illumination. In ACM SIGGRAPH

2004 Course Notes (SIGGRAPH '04). ACM, New York, NY, USA, Article 5.

5. F. Sillion and C. Puech. 1989. A general two-pass method integrating specular and diffuse

reflection. In Proceedings of the 16th annual conference on Computer graphics and interactive

techniques (SIGGRAPH '89). ACM, New York, NY, USA, 335-344.

6. Henrik Wann Jensen, Global illumination using photon maps, Proceedings of the eurographics

workshop on Rendering techniques '96, p.21-30, December 1996, Porto, Portugal.

7. Wald, I.; Friedrich, H.; Marmitt, G.; Slusallek, P.; Seidel, H.-P.; , "Faster isosurface ray tracing

using implicit KD-trees," Visualization and Computer Graphics, IEEE Transactions on , vol.11,

no.5, pp.562-572, Sept.-Oct. 2005.

8. Philippe Bekaert Philip Dutre, Kavita Bala. Advanced Global Illumination 2nd edition. AK

Peters, 2006.

9. Peter Shirley, R. Keith Morley. Realistic Ray Tracing 2nd edition. AK Peters, Natick

Massachusetts, 2003.

10. Arvo, James, ed. Graphics Gems Two. Vol. 2. Morgan Kaufmann, 1991.

11. E. Lafortune and Y. Willems. Using the modified Phong reflectance model for physically based

rendering. Technical Report CW197, Dept. Comp. Sci., K.U. Leuven, 1994.

