TNCG13 SFX - Tricks of the Trade 2013
Sathish Kottravel (satko730)

Cloth Deformer Plugin Using Hybrid GPU-CPU Parallelization

}» Hode Behavior

v Enable CUDA

Figure 1: ClothDeformer a) Snapshot from final rendering b) Scene setup c) Deformer attributes

Introduction

In this project a basic Cloth Deformer plugin is developed using C++ Maya
API. This deformer invokes solver that uses Verlet-Integration method to
solve mass-spring system. Mass-spring system is constructed by the
deformer for a given polygonal mesh (cloth). Verlet-Integration is simple
and easy approach to solve any mass-spring system.

The solver exploits parallelism from both GPU and CPU. Force equation is
solved in GPU using CUDA. The structural constraints are solved in CPU
and uses OpenMP to invoke parallelism.

The Cloth Deformer is applied on a polygonal plane which is treated as
active object that represents the cloth. The solver in the deformer requires
two passive objects (sphere and plane). Two types of forces can act on
cloth, gravity and wind. The magnitude of the gravity and wind can be
controlled from the attributes.

Plugin

This plugin has been developed using Visual Studio. But instead of using
Visual Studio wizard provided with Maya API, special CMake scripts are
written for this project. These CMake scripts can search for Maya libraries,
include directories and generates visual studio solution. Similarly CUDA
CMake scripts are used to located Cuda API.

Cloth Deformer plugin consists of several attributes as shown in Figure1c.
Most of the attributes in cloth deformer node can be connected to
attributes of other nodes in the scene. In Figure 2, MEL snippet has been
shown that connects attributes of polygonal sphere (center and radius) to
the cloth deformer attributes. Similarly floor, wind, gravity and other
attributes can be connected from other Maya nodes.

string fpSphere[] = "polySphere -ch on -0 on -r 1.0°

Figure 2 Sample script that used to setting up initial scene. Connecting sphere radius and center to Cloth
Deformer attribute.

Cloth Deformer plugin has MPxDeformerNode as parent node. By default
parent node has input and output geometry. During compute() function of
the plugin, GPU data structure and other helper structures are initialized.
This initialization is done when compute() function is executed for the first
time. This whole setup is reinitialized again when playback time is set to
frame1. This is shown in Figure 3a, C++ snippet.

During the solver phase, 2 types of displacement information are required
for each vertices. They are displacement from previous time frame and
displacement from current time frame. This is used in the force-equation
solver to predict the next displacement. At this phase each node should
have been associated with the resultant forces acting upon them.

For simplicity, uniform mass is assigned to each vertex. But the underlying
data structure already supports non-uniform mass. After solving the force
and predicting the displacement, it is necessary to perform collision
detection. In this project, sphere and plane are two passive objects used
for collision and interaction.

After this step, constraints between each displaced vertices are restored.
Solving constraints is very essential step and it is also computationally
intensive. Constraints are not GPU friendly. In other words, solving
constraints on GPU would lead to very high thread divergence.With special
preparation it is possible to solve constraints on GPU, which is beyond the
time scope of this project. But as an alternative option, constraints can be
solved using CPU multi threading. OpenMP is used in this project.
OpenMP has been preferred for two reasons, one its less intrusive, two
resolving racing condition is much easier (Figure 3b).

Figure 3 a) Initialization and resetting the plugin. b) Resolving racing conditions in OpenMp

Discussion and Future Work

Basic ClotherDeformer implementation is done and it shows reasonable
stability. Hybrid CPU-GPU parallelization has been implemented. Force
equation solver is GPU accelerated. Constraint solver is CPU accelerated.
Performance of constraint solved can be improved either by porting it to
GPU or by using better data structure that can support optimized
acceleration on CPU. The type of constraint that has been used in this
project is Structural constraints. It preserves structure of the cloth. Another
type of constraint that can be improve cloth like behaviour is Bend
Constraints. Bend constraints remove any edgey structures in the cloth
during simulation. But this will increase computational load of constraint
solver.

[Input Mesh J

/ ClothDeformer \

Solver Adt

Collision Detection
Sphere/Floor

Output Mesh J

Figure 4 ClothDeformer overview. dt is time step. At every time step displacement is calculated.

Result

For demo scene with minimal animation has been setup. Final rendering of
the scene is done using Mental Ray with indirect lighting option as Image
Based Lighting. IBL uses HDR panorama image to emit light (provided in
the course webpage). (Link)

References

[1] Computer Graphics Lab, http://cg.alexandra.dk/

[2] CUDA Programming Guide 3.0

[3] CUDA by Example.

[4] Blob Physics By Mick West, "Inner Product" - Game Developer Magazine
[5] Maya API Reference

http://youtu.be/tfI5hiD7GX4

